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SlMIwi BOIJKDARY LAXER SOLUTIONS FQR CaMBIlJED FORCED ABD FREZ CORVECTIOX 

ABSTRACT 

Consideration i s  given t o  the combined forced and free convection flow and heat 

t ransfer  about a nonisothermal body subjected t o  a nonuniform free stream velocity. 

Similar solutions for  the laminar boundary layer equations are found t o  exis t  when 

the free stream velocity and surface temperature vary respectively as and x . 2m-1 

The parameter controlling the relat ive importance of the f r ee  and forced convection is  

Gr/Re . 2 A flow separation phenomenon may occur when the forced and free convection 

ac t  i n  opposite directions. 

Extensive numerical solutions of the transformed boundary layer equations have 

been carried out for the cases of unifow w a l l  temperature and uniform W E C L  heat f lux 

fo r  a Prandtl nuniber of 0.7 (gases) over a wide range of values of Gr/Re2. Results 

are reported f o r  the heat transfer, shear s t ress ,  and velocity and temperature f ie lds .  

Cr i te r ia  are given f o r  cataloguing flows as purely forced, purely free, and mixed. 

IRTRODUCTIOIV 

The requirements of modern technology have stimulated in te res t  i n  fluid flows 

which involve the interaction of several phenomena. Attention is  directed here t o  the 

s i tuat ion where forced and f ree  convection act  simultaneously i n  establishing the flow 

.) and temperature f ie lds  adjacent t o  a heated o r  cooled body. 

problem, a natural first step is the study of similar solutions, which constitute a 

In approaching such a 

s e t  of exact solutions of the laminar boundary layer equations. 

solutions f o r  the separate forced and free convection boundary layers may be found 

i n  the 

flow. 

Although similar 

these fundamental solutions have yet to be given fo r  the combined 

The finding of such solutions constitutes the goal of t h i s  investigation. 

Our motivation for seeking similar solutions is three-fold. Firs t ,  the results 

m a y  be direct ly  usable i n  important technical applications. Further, the similar 

solutions provide a standard of comparison against which approximate procedures may 

1. V. M. Falkner and S. W. Skan, Phil. Mag., 12,  865. 

2. E. M. Sparrow and J. L. Gregg, Trans. A.S.M.E., Vol .  80, 1958, 379. 
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I '  be checked; once verified, the approximate methods may then be used in  studying more 

complex flow situations where the conditions of similari ty are not sat isf ied.  

the general trends may provide valuable insight i n  understanding the physical occur- 

Finally, 

rences which take place i n  such combined flows.  

Previous boundary layer  studies 3 y 4  f o r  combined forced and free convection have 

been confined t o  the isothermal vertical  plate  aligned pasaXLel to a uniform f ree  

stream. These conditions do not lead t o  similar-type solutions. As a consequence, 

t h i s  problem has been studied only i n  an incomplete way, the published analyses taking 

the form of a perturbation of the pure forced convection solution. Flow i n  tubes and 

ducts under conditions of combined forced and free convection has been studied by 

several investigators, but t h e i r  work is not of direct  interest  t o  us here and further 

de ta i l s  need not be given. 

lW!IlYSIS 

General Considerations 

The general problem of boundary layer f l o w  and heat t ransfer  will include a f ree  

stream pressure gradient and a nonisothermal surface. Previous studies have revealed 

similar solutions f o r  the purely forced convection case when the free stream velocity 

varies according t o  the following power l a w  

u, = Axm (1) 

where x measures the distance fromthe leading edge. For purely f ree  convection 

flows with uniform free stream temperature T,, similar solutions have been obtained 

fo r  w a l l  temperature variations o f  the type 

- T, = Bxn (2) 

Thus it would appear natural t ha t  we should begin our quest f o r  similar solutions by 

simultaneously imposing power  function variations fo r  both the free  stream velocity 

and w a l l  temperature. 

3. A. A. Tanaev, Jour. Tech. F'hysics (U .S .S .R . ) ,  Translated by h e r .  Inst. of Physics, 

4. E. M. Sparrow and J. L. Gregg, t o  be published in J. Appl. Mech. 

Vol. 1, no. U, p. 2477, 1956. 
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For the sake of concreteness, we display i n  Figure 1 several possible physical 

models of the mathematical analysis. Sketches (a) and (b) show the wedge configura- 

t i on  commonly associated with the free stream velocity of Equation (l), while sketch 

( e )  suggests an alternate way of achieving this velocity through the contouring of 

a channel w a l l .  The s8me analysis covers the situations depicted i n  Figure 1. 

W e  w i l l  designate 86 aiding flows those flows for  which the buoyancy force has 

Those flows f o r  a posit ive component in the direction of the free stream velocity. 

which the buoyancy force has a component opposite t o  the free  stream velocity w i l l  be 

designated as opposing flows. 

aiding case w i U  require 

Tw - T, < 0 (B < 0). 

o r  i f  the direction of the gravity f ie ld  i s  reversed i n  the other two cases, the c r i -  

ter ia  w i l l  be interchanged. Although the analysis and results me given with the 

orientation of Figure 1 i n  mind, they m a y  be extended without essential  modification 

For the gravlty orientation shown i n  Figure 1, the 

- > 0 (B > 0) and the opposed case w i l l  require 

If the lower half of the wedge i n  Figure l(b) i s  considered, 

t o  the reversed orientations. 

The analysis is  made f o r  laminar, steady flow. Viscous dissipation i s  disregarded 

i n  consideration of the relatively smal l  velocit ies usually encountered i n  free con- 

vection. Fluid property variations other than essential  density variations are also 

neglected. 

The Conservation Equations 

The velocity and therm3 fields are governed by the basic conservation laws: 

m a s s ,  momentum, and energy; and it i s  these which constitute the starting point of our 

study. The boundary layer form of these equations fo r  steady, nondissipative, constant 

property flow is 
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1 vided tha t  % is of the same or lower order than gx. I 

where u and v are the velocity coqonents in the x and y directions; T, the I 
s t a t i c  temperature; &, the magnitude of the gravity force i n  the negative x direc- I 

I 

tion; and k, p, 5, and p, the thermal conductivity, density, specific heat, and I 

absolute viscosity, respectively. ~ 

I 

The conservation of mass equation (3) may be immediately sa t i s f i ed  by the usual 
' t c  
M r: stream function $, i.e., w a* 

v = - 3 i i  
&f u = 3, 

I 

* I 

Then turning t o  equation (4), we r e c u  tha t  according t o  boundary layer theory, 

the pressure changes across the layer may be neglected; and as a consequence, dp/dX 
~ 

c m  be evaluated f r o m  the free stream f l o w .  For the free  stream, where the viscosity 

plays no role, the momentum equation is  

From t h i s ,  we f ind an expression f o r  dp/dx, which may i n  turn be substituted into 

the boundary layer momentum equation (4), giving 

The density difference (p, - p )  is essential  t o  the f ree  convection motion and must 

be retained, but other density differences may be ignored within the framework of the 

constant property a s s w t i o n .  Following c lass ica l  f ree  convection theory, w e  rewrite 
c 

the buoyancy term as 

gJPa - P I  = g x I m  - T,) 
where /3 i s  the coefficient of thermal. expansion. With t h i s  equation (4a) becomes 

where v (= p/p) represents the kinematic viscosity. 
I 

"In the present instance, the transverse pressure gradient can be neglected pro- I 
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A further rephrasing of the momentum equation (4%) and energy equation (5) 

be made by replacing the velocity components u and v i n  favor of the stream f'unc- 

t i on  i n  accordance with (6). 

a$- a2* - af 
ayaxay xi 

The formidable mathematical task 

The result of t h i s  substi tution is  

posed by t h i s  pair  of simultaneous p a r t i a l  differen- 

tial equations i s  a strong motivation t o  seek a similari ty transformation which leads 

t o  ordinary different ia l  equations. 

The statement of the problem i s  completed by giving the boundary conditions. A t  

the so l id  surface (y = 0), the requirements tha t  

the conditions of no s l i p  and impermeability. 

t o  the w a l l  is required to take on the surface temperature 

u = v = 0 ar ise  respectively from 

Further, the f l u i d  immediately adjacent 

T,. Far from the w a U ,  

the  f lu id  velocity and temperature must asymptotically approach the 

U, and T,. A formd statement of these boundary conditions i s  

0 u=5= 

v = - T = o  X 
a* 

T = Tw 

free stream values 

Y + - J  

W e  now proceed t o  reduce the par t ia l  different ia l  equations (8) and (9) t o  a 

corresponding pa i r  of ordinary different ia l  equations, obtaining as permissible varia- 

t ions i n  U, and Tw those given by equations (1) and (2). 

The Transformed Equations 

Guided by previous experience with boundary layer problems, w e  propose a new in- 

dependent variable q which includes both the x and y coordinates i n  the  follow- 

ing way 

where C1 and 0) are constants as yet undetermined. W e  are f i r ther  l e d  by experience 

t o  construct new dependent variables 8 and F as follows 
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where again Cz and X are unspecified. The variable 0 i s  a dimensionless tem- 

perature and F 

problem. A t  t h i s  point i n  the analysis, we cannot be certain tha t  8 and F w i l l  

t r u ly  be functions of r) alone, and it i s  now our aim t o  f ind the conditions under 

whiqh t h i s  is  so. 

is  a dimensionless stream function related t o  the velocit ies of the 

I n  a purely formal way, w e  may carry out the transformation of equations (8) and 

(9).  The end result of these operations i s  

where primes denote differentiation with respect t o  7. Clearly, F and 0 can be 

functions of 7 alone only i f  the various factors of x are removed from equations 

(12) and (13). So, it i s  found from equation (13) that  

and 

The l a t t e r  condition i s  a differential  equation whose solution i s  given by Equation 2. 

When both conditions are inserted i n  Equation (12), and the cr i ter ion of independence 

from x i s  applied, a d i f fe ren t ia l  equation fo r  U, resul ts  whose solution i s  

given by Equation (1). 

It further follows tha t  

n =  Z m - 1  
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m - 1  n - 1  a=- = -  
2 4 "  

A = - -  m + l  n + 3  
2 -- 4 

Equation (14a) provides a very interesting result ,  namely, t h a t  the free  stream 

velocity and surface temperature variations cannot be both selected arbitrari ly when 

similar solutions are being considered. 

vasiations of and U ,  is  not surprising when we real ize  that the rates of boundary 

layer growth associated with the separate forced and free convection flows must be the 

same i n  order t o  achieve similar solutions f o r  the combined flow. 

growt'n fo r  pure forced convection depends on 

boundaqy layer growth depends on 

separate boundary layer growth rates,  the variations of Tw and U, are constrained. 

As an example, i f  consideration is being given t o  the isothermal w a l l ,  i .e.,  n = 0, 

then the free stream velocity m u s t  vary as x . 

That there is  a constraint tying together the 

The boundary layer 

U,, while i n  pure free convection the 

So, i n  the process of equalizing the - T,. 

1/2 

The equations can now be rewritten with the x dependency removed: 

Having determined the exponents o and 1 of the transformation equations 

( l la)  and (llb), there s t i l l  remains the task of choosing the constants C1 and C2. 

Actually, there i s  considerable lati tude i n  making these selections. W e  w i l l  explore 

two interesting possibi l i t ies  here, the first of which will give q and F variables 

whose definitions coincide with pure forced convection, while the second gives an 

and F whose definitions coincide with pure f ree  convection. 

F i r s t ,  let us select  C2/C1 = Z v .  This choice w i l l  introduce a Prandtl Number 

Next, we (Pr = pcP/k) into the energy equation and reduce it t o  the standard form. 

select 

(14b), the quantities 

F'(m) = constant, say 2, Thus we determine from Equations (l), (6), (ll), and 

I 
I 

I 
1 

1 

i 

I 

~ 

I 

I 

I 

1 
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Then, using Equations (14a), (14b), and (11, we have 

demonstrating tha t  17 and F do indeed have t h e i r  forced convection definitions. 

Turning t o  Equations (15) and (16), we may then evaluate the various constant coef- 

f ic ien ts .  I n  particular, consider the coefficient of 6 i n  equation (15). 

- -  - constant 
cpc; 

where w e  have used the definitions of Grashof and Reynolds numbers as follows 

and where the absolute value signs cause G r  t o  be always positive. As  is well- 

known, the Grashof number i s  the controlling parameter f o r  the f r ee  convection flow 

and the Reynolds number i s  the controlling parameter for  the forced convection flow. 

Not only have we been able t o  reduce one of the coefficients of Equation (15) t o  a 

r a t i o  of these important parameters, but more important, we have demonstrated tha t  

Gr/Re2 i s  independent of x fo r  similar solutions! W e  can then rewrite Equations 

(15) and (16) as 

F"' + (m + 1)FF" - 2m(F')2 = 8m 2 8(Gr/Re2)0 ( 2 0 )  

(21) 0" + Pr[(m + 1)Fe' - (4m - Z)F'0]  = 0 

where Pr  i s  the Prandtl number. The plus-minus signs i n  the last term of  Equation 

(20)  correspond respectively t o  aiding and opposing flows (the Grashof number as de- 

fined by Equation (19) i s  always positive). 
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With t he  aid of equations (17c) and ( l l b ) ,  the boundary conditions (10) trans- 

form to 

F(0) = F ' ( 0 )  = 0 ,  e ( 0 )  = 1 

F' 4 2, E - + O  as r l + m  

So, the mathematical problem i s  seen t o  involve three parameters: Gr /Re2,  t'ne 

exponent m, m d  Pr. The magnitude of Gr/Re2 gives the relat ive importance of 

forced and free convection i n  determining the combined flow. For small values of 

t h i s  parameter, forced convection will predominate; while for  large values, free 

convection w i l l  control. 

the term 

From Equation ( Z O ) ,  it i s  clear that  for opposing flows, 

2 -8(Gr/Re ) e  plays the same role as does the adverse pressure gradient i n  

the pure forced convection problem So, it would be expected tha t  with increasing 

values of 2 Gr/Re , a situation of flow separation would reached. 

As has already been remarked, the choices of  C1 and C 2  as given by Equation 

(17a) are by no m e a n s  unique. 

t ing  C,/C, = 2v  a d  the quantity lgxIPIBI/CICZ = 1. This choice leads t o  

An alternate interesting selection i s  obtained by set-  

2 2  

Upon substitution into the transformation equations ( l l a )  and (I lb) ,  it i s  found 

t'nat q and F have definitions identic& t o  those for a pure f ree  convection flow. 

Further, the coefficients of Equations (15) and (16) may then be evaluated, giving a 

pa i r  of equations for  8 and F which depend upon the parameters: Re2/Gr, the 

exponent n (or m) and Pr. The parameter Re / G r  now appears i n  the boundary ?tin- 

dit ions as well. We w i l l  not pursue these equations here, since solutions were 

obtained u t i l i z ing  Equations (20) and (21) .  

2 

SOLUTIONS 

Inasmuch as analytical solutions of Equations (20) and (21) subject t o  the 

boundary conditions (22) could not be found, it was necessary t o  use numerical tech- 

niques. The numerical method, five point forward integration, requires tha t  at  the 





- 3 . l -  

I n  terms of the variables of Equations (1%) and ( l l b ) ,  the expression fo r  q becomes 

(Tu - T,)Re'/' 
2x 

(5n-1) / 4 q = -k w(o)  - x 
where we have used the definit ion of Reynolds number from (19).  

rephrase the heat t ransfer  resul ts  i n  terms of heat transfer coefficients and Nusselt 

numbers according t o  the following definitions 

It is  customary t o  

P- 
M 
r;' w 

With th i s ,  we arrive at the dimensionless heat t ransfer  representation 

Since e ' ( 0 )  depends upon Gr/ReZ, m and Pr, so then does the Nusselt-Reynolds 

relationship. 

Passing now t o  the w a l l  shear s t ress  T ~ ,  we note tha t  

Defining a f r i c t ion  coefficient cf by the relation 

Cf = 
(PU3')  

( '7)  

and introducing the variables of the analysis, we find the dimensionless representa- 

t i on  of the shear stress resul ts  t o  be 

2 The relat ion between cf and Reynolds number depends upon Gr/Re , m, and Pr. 

T m i n g  t o  the numerical results, it may be observed tha t  the values of Q ' ( 0 )  

and 

t ransfer  and f r i c t ion  expressions. 

F"(0) tabulated i n  the Appendix are direct ly  usable i n  the dimensionless heat 

O u r  aim i s  t o  i l l u s t r a t e  general characterist ics 

by near,s of plots.  

case appear t o  be repeated fo r  the uniform heat flux case, there appears t o  be no need 

Inasmuch as the general trends for  the uniform w a 3 1  temperature 
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fo r  detailed consideration of both. So, w e  w i l l  focus primary attention on the re- 

sults f o r  uniform w a l l  temperature. 

On figure 2, we plot  the dimensionless heat transfer and shear s t ress  parameters 

of Equations (25) and (28) as a function of Gr1/2/Re for  the s i tuat ion of aiding 

flows. For smal l  values of the abscissa, the flow is  close t o  pure forced convec- 

tion; while f o r  large values of the abscissa, the flow i s  approaching free convec- 

tion. 

pure forced convection and the pure free convection flows. 

l imiting l ines  are: 

With t h i s  i n  mind, there are included l ines  representing the results f o r  the r‘- 
M 

‘ W  
3 The equations of these 

Forced convection 
41?u/Re1/2 = 1.665 

= 3.599 2c@e 1 / 2  

q2 I Free convectionR 
2cge1/‘ = 3. 840(Gr1/‘/Re) 

The interesting feature of t h i s  plot  is tha t  the heat transfer results f o r  the mixed 

flow show a surprisingly small deviation from the envelope formed by the two l imiting 

l ines .  In fact, the heat t ransfer  predictions based on the envelope l ines  would be 

i n  e r ror  at most by 23 percent. This somewhat unexpected finding has important prac- 

t i c a l  implications. For the skin f r ic t ion results,  the maximum deviations from the 

envelope curve are much larger.  Based on the curves of Figure 2, we w i l l  later give 

c r i t e r i a  t o  distinguish when a f l o w  may be considered as purely forced, purely free,  

o r  mixed. 

The phrasing of the resul ts  as Nusselt-Reynolds and f r i c t ion  factor-Reynolds re- 

la t ions  may imply tha t  the problem i s  being viewed as a basic forced convection flow 

on which there i s  superposed varying amounts of f ree  convection. By recasting the re- 

sults i n  terms of free convection correlation variables, the opposite viewpoint may be 

obtained. Such a step has been taken on Figure 3, where we plot  Nu/Gr and 

It may be easi ly  verified tha t  U, drops out of the expression f o r  T. 
* 
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greater f ree  convection effect i s  required t o  bring about separation for  uniform 

heat flux may be explained by noting tha t  the free stream flow exerts a stronger 

posi t ive pressure gradient i n  th i s  case, i .e . ,  U, 0: xoa6 

The heat t ransfer  and f r ic t ion  factor resul ts  for  the uniform heat f lux (UHF) and 

uniform w a l l  temperature (UWT) cases are compared on Figure 5. For aiding flows, 

as opposed t o  Urn a xoa5. 

the R u s s e l t  nlndbers f o r  the two situations are i n  an almost constant r a t io  (1.175- 

1.141) over the en t i re  range of Gr1i2/Re. 

N u s s e l t  number r a t io  i s  somewhat greater. T'ne f r i c t ion  factor r a t io  ranges from 1.083 

t o  0.94 fo r  aiding flows and, as expected, displays a significantly greater variation 

* P  For opposing flows, the variation of the m 

w 9 

f o r  opposing flows. 

Velocity and Temperature Profiles 

Greater insight into the details  of tjhe flow and thermal fields may be obtained 

from the velocity and temperature profiles. Again, w e  deal with only the uniform 

w a l l  temperature situation, noting t h a t  the same trends appear f o r  uniform heat flux. 

The distribution of the velocity across the boundary layer has been plotted on 

2 Figure 6 f o r  a w i d e  range of  the parameter 

displays the role  of the f ree  convection i n  modifying the flow f ie ld .  

Gr/Re . This series of curves strikingly 

As Gr/Re2 

ranges from 0 t o  100 under aiding flow conditions, the profiles change from the pure 

forced convection t o  a shape which is, aside from the ta i l  of the curve, essent ia l ly  

t h a t  of free convection. For opposing flows, as Gr/Re2 ranges from 0 t o  0.95, the 

increasingly significant undermining effects  of the f ree  convection are clearly v i s -  

ib le .  The shapes of these lat ter curves are quite similar t o  those fo r  pure forced 

convection flow under an adverse pressure gradient. 

Boundary layer temperature distributions a given on Figure 7. A l l  curves dis- 

play the same simple shape which i s  also found i n  the thermal boundary layers of the 

pure forced and pure free  convection flows. 

Cr i te r ia  for  Pure and Mixed Flows 

It i s  of pract ical  in te res t  i n  the computation of heat t ransfer  and shear s t r e s s  

t o  distinguish those conditions under which a given flow may be regarded as pure 
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correspond t o  predominantly f ree  convection flows, while large values of the abscissa 

correspond t o  nearly forced convection flows. The limiting l ines  corresponding t o  

pure forced and free convection are also shown, and their equations are given as 

t- 
M 
rl 

I w 

c 

follows 
4Nu/G&/* = 1.413 ) 

Free convection 
[4-cV/p (!!-)ilGi3/' = 3.840 

The general remarks about Figure 2 apply as w e l l  t o  Figure 3. 

So far w e  have been concerned with aiding flows. Now, w e  turn t o  opposing flows. 

A s  has been already noted, the increasing free convection effects  associated with in- 

creasing Gr/Re2 should lead t o  separation. So, it i s  expected that cf should de- 

crease monotonically t o  zero as &/ReZ increases. The dimensionless heat transfer 

and f r ic t ion  factor resul ts  f o r  the opposing flow situation are plotted i n  Figure 4 

f o r  the isothermal w a 3 l  case. The f r ic t ion factor decreases as we have supposed, the 

separation point occurring a t  a value of 

But, the  interesting point i s  the relatively minor variation experienced by the dimen- 

sionless heat transfer panmeter, showing a decline of only 28 percent over the  whole 

range from pure forced convection (Gr/Re2 = 0) t o  separation. 

may have important pract ical  implications. 

2 Gr/Re very s l igh t ly  i n  excess of 0.95. 

Again, t h i s  finding 

Plots depicting the resul ts  for the uniform heat flux si tuat ion would be essen- 

t i a l l y  the same as Figures 2, 3, and 4, the only differences being i n  the numerical 

values. We now proceed t o  summarize the numerical differences. F i r s t  of 831, the 

separation point for  the uniform heat flux case occurs at 

separation value for uniform w a l l  temgerature i s  0.95. 

Gr/Re2 = 1.15, while the 

The f ac t  tha t  a relat ively 
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(e i ther  forced or  free) from those under which it ?nust be regarded as mixed. 

portance of t h i s  m a t t e r  stems from the fac t  t h a t  frequently, only results f o r  the pure 

flows are available. 

The im- 

F i r s t  we examine the conditions under which the free convection effects  m a y  be 

O u r  goal i s  t o  f ind a quantitative neglected i n  computing the loca l  heat transfer. 

c r i te r ion  for  determining when the pure forced convection heat t ransfer  relationship 

w i l l  yield sufficiently accurate results for the mixed flow case. Suppose it i s  de- 

cided tha t  an accuracy of 5 percent i s  adequate f o r  the great majority of applications. 

Then, using Figure 2, we f ind that  when Gr/Rez < 0.3, the flow can be regarded as 

purely forced as far as the heat transfer computation i s  concerned. 

Next, w e  inquire about the conditions under which the free convection heat trans- 

f e r  relationship w i l l  yield s f l i c i e n t l y  accurate results f o r  the mixed flow situation. 

Again supposing that an accuracy of 5 percent i s  adequate, and using Figure 3, it i s  

found tha t  the pure free convection results can be used when Gr/ReZ > 16.  

So, i n  summary, the following subdivisions can be made from the standpoint of the 

heat transfer computation. 

0 < Gr/Rez < 0.3 

0.3 < G r / R e 2 <  1 6  

16  <Gr/ReZ 

These c r i t e r i a  w e r e  derived fo r  the case  of aiding 

tha t  Equation (31a) s t i l l  applies, but we m u s t  now 

0.3 < Gr/Re2 

Forced convection (314 

Mixed flow ( 31b 1 

Free convection (31c 

flows. 

replace (31b) by the relat ion 

For opposing flows, we f ind 

Mixed flow (3m 

and note tha t  no cr i te r ion  for  purely free convection flow i s  available since solutions 

w e r e  not obtained beyond the separation point. 

Just as Equation (31) catalogues the flow type on the basis of heat transfer com- 

putations, so too may the flow be catalogued on the basis of shear stress computations. 

Again adopting a figure of 5 percent as representing an acceptable accuracy, the flow 

subdivisions from the standpoint of the shear s t ress  are found t o  be 



r;' w 
* 

F"(0) 

22.59 
73.449 
37.733 
23.187 
14.652 
10.290 
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APPENDIX 

TABULATION OF F"(0) AND 0'(0) VALclES 

4 ( 0 )  

2.2698 
1 - 9251 
1.5613 
1.3466 
1.1784 
1.0690 

(a) Aiding f lows.  

~~ 

100 
50 
20 
10 
5 

25/9 
2 
1 

- 8  
.5 - 25 
.05 
.02 

0 

0 
.02 
-05 
.1 
-25  
.5  
.8 
.9 
.94 
.95 

1.0 
1.1 
1.15 
1.154 

UWT 

6.2804 
5.7798 
5.0001 
4.3183 
3.7463 
3.6581 
3.5989 

.94252 

.92401 

.89353 

.86492 

.83927 

.83516 

.83238 

116.02 
69.589 
35.871 
22.165 
14.145 

8.5063 
6.3457 
5.8853 
5.1712 
4.5507 
4.0338 
3.9545 
3.9013 

3.5989 
3.5394 
3.4495 
3.2980 

1.9852 
.79060 
-29531 
. 0 65 485 
.0033788 

0.83238 
.82956 
.82527 
.81792 

.74722 
-66676 
-62582 
. a 4 4 9  
.59841 

URF 

2.5882 
2.1952 
1.7816 
1.5389 
1.3504 

1.1761 
1.0927 
1.0732 
1.0412 
1.0117 

.98574 

.98162 

.97883 

(b) Opposing f l o w s .  

3.9013 
3.8479 
3.7673 
3.6318 
3.2152 
2.4795 
1.4957 

.73003 
-28082 
.024373 
.00025963 

97602 
.97175 
.96447 
.94134 
.89728 
.83003 

.76816 
,72610 
.69943 
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0 4 Gr/Re2 0.06 Forced convection 

0.06 < Gr/Rez .= 1 6  Mixed flow 

1 6  < Gr/ReZ Free convection 

These c r i t e r i a  are based on the results fo r  aiding flows- 

t o  opposing flows, but (3zb)  is replaced by 

Equation (32a) also applies 

0.06 < Gr/Re2 Mixed flow ( 3 2 4  

As before, no cr i ter ion has been obtained fo r  purely free  convection flow under oppos- 

ing conditions. 

The c r i t e r i a  embodied i n  Equations (31) and (32) were derived using the resul ts  

of the uniform waLL temperature case, but they also apply rather well t o  the uniform 

heat flux situation. 

oJr€IER SIMILARITY SITUATIONS 

Consideration w a s  given t o  the si tuation where the f ree  stream velocity of Equa- 

t ions (1) takes on negative values, i.e., A ( 0 .  Physic8J.ly speaking, t h i s  represents 

the unusual case of a free stream flow toward the leading edge. For t h i s  situation, 

the conservation equations can be reduced identically to  the ordinary different ia l  

equations (20) and (21) , provided only tha t  minus signs be inserted i n  the brackets 

of Equation (17a)  determining C1 and C2. The boundary conditions (22) s t i l l  apply, 

except tha t  now F' + - 2  as q +m. In  studying the signs of the various terms of 

Equations (20) and (21) fo r  large values of q, it i s  found tha t  contradictions occur. 

W e  are thus persuaded tha t  physically reasonable solutions cannot be found for  the 

negative free stream situation. 

It has also be demonstrated that  the conservation equations reduce t o  ordinary 

ax bx d i f fe ren t ia l  equations when Urn" e , Tw - Two= e . Detailed study and numeric& 

computations, however, have not been carried out. 
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L i s t  of Figures 

Fig. 1. - Physical model and coordinates. 

Fig. 2. - Heat t ransfer  and fr ic t ion factor resul ts  fo r  aiding flows 
(uniform w a ~  temperature, Pr = 0.7). 

Fig. 3. - Rephrasing of the results of Fig. 2 i n  terms of f ree  convec- 
t i on  correlating groups. 

Fig. 4. - H e a t  transfer and f r ic t ion  factor resul ts  f o r  opposing flows 
(uniform w d l  temperature, Pr = 0.7). 

Fig. 5. - Comparison of uniform wa;U temperature (UWT) and uniform heat 
flux (u") results.  

Fig. 6. - Representative velocity profiles (uniform wall temperature, 
Pr = 0.7) .  

Fig. 7. - Representative temperature prof i les  (uniform wall temperature, 
Pr = 0.7) .  
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